Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 9(8): 4985-7, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19928177

RESUMO

Surface templated and supported silver nanoparticles form on silver-exchanged mineral chabazite upon thermal reduction. The method generates high concentrations of thermostable, uniform silver nanoparticulates that may have applications as catalysts. Properties of such nanoparticles are expected to vary with particle size, composition, metallic character, defect type and density. We establish that these silver nanoparticles are metallic, crystalline and highly twinned. The twinned nature of the particles may influence both their remarkable thermal stability and their enhanced chemical and biological activity.

2.
J Nanosci Nanotechnol ; 9(5): 3134-7, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19452980

RESUMO

Silver exchanged molecular sieves ETS-10 (Ag-ETS-10) and mordenite (Ag-mordenite) were dehydrated under vacuum at temperatures between 100 degrees C-350 degrees C. Changes in the state of the silver were studied using X-ray photoelectron spectroscopy (XPS). Silver cations in titanosilicate Ag-ETS-10 are fully reduced to Ag(0) at temperatures as low as 150 degrees C. The characteristic features of the XPS spectrum of silver in this Ag-ETS-10 species correspond to only metallic silver. The signal for metallic silver is not observed in the XPS spectrum of aluminosilicate Ag-mordenite, indicating that silver cations are not reduced, even after heating to 350 degrees C.

3.
J Am Chem Soc ; 123(51): 12781-90, 2001 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-11749535

RESUMO

The effects of heat-treatment on the structure of the strontium ion-exchanged titanosilicate ETS-4 have been studied by Rietveld analysis of powder neutron diffraction data and by FT-Raman spectroscopy. Hydrous Sr-ETS-4 (space group Cmmm), upon heat-treatment under inert atmosphere at temperatures between 423 and 573 K, exhibits framework contraction as evinced by the decrease in the unit cell dimensions. The effects of heat-treatment on the dimensions of the transport-controlling eight-membered ring (8MR) are elucidated by Rietveld analysis. It is also found that during heat-treatment: (a) the double three membered rings (D3MRs) in ETS-4 are sites of structural instability, (b) the titania chains running along [010] exhibit a large degree of disorder in the bridging oxygen atoms, and (c) significant relocations of the strontium cations take place, which may affect the separation properties of the heat-treated materials. Raman spectra of heat-treated ETS-4 crystals exhibit strong cation-framework interaction effects. Vibrational modes involving the atoms in the titania chains show progressive frequency shifts and loss of intensity with increasing heat-treatment temperature, in a manner consistent with the crystallographic results. The study indicates the potential for continuously varying the effective pore dimension of ETS-4 by combining heat-treatment with appropriate ion-exchange procedures.

4.
Nature ; 412(6848): 720-4, 2001 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-11507636

RESUMO

Zeolites and related crystalline microporous oxides-tetrahedrally coordinated atoms covalently linked into a porous framework-are of interest for applications ranging from catalysis to adsorption and ion-exchange. In some of these materials (such as zeolite rho) adsorbates, ion-exchange, and dehydration and cation relocation can induce strong framework deformations. Similar framework flexibility has to date not been seen in mixed octahedral/tetrahedral microporous framework materials, a newer and rapidly expanding class of molecular sieves. Here we show that the framework of the titanium silicate ETS-4, the first member of this class of materials, can be systematically contracted through dehydration at elevated temperatures to 'tune' the effective size of the pores giving access to the interior of the crystal. We show that this so-called 'molecular gate' effect can be used to tailor the adsorption properties of the materials to give size-selective adsorbents suitable for commercially important separations of gas mixtures of molecules with similar size in the 4.0 to 3.0 A range, such as that of N2/CH4, Ar/O2 and N2/O2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...